This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognizing you when you return to our website and helping our team to understand which sections of the website you find most interesting. We do not share any your subscription information with third parties. It is used solely to send you notifications about site content occasionally.

creatine

  • Athletic training is based on principles such as physical overload, meaning that the body is taxed to near its limits and then allowed to recover with the expectation that recovery will be quicker in the future for the same level of exertion and that the body will over-compensate at recovery and thus allow even more exertion upon the next challenge. This demand-and-response model clearly taxes bodily reserves. Some supplements, for example, protein, are aimed mostly at recovery and super-compensation. Others, such as creatine, also provide super-physiologic levels of substrates, in this case a substrate for the replenishment of adenosine triphosphate (ATP), allowing the muscles to go beyond their normal physiologic capacity. There is not much question but that both of these objectives can be achieved to some degree, meaning that supplements can be valuable for supporting and increasing physical performance and, used properly, can reduce the risks of injury.

    There is no one size-fits-all in supplementation, however. For instance, although it clearly is the case that supplemental amounts of certain antioxidants can help to maintain health and improve recovery, it also is true that the type, timing and amounts of antioxidants can exert other effects. Indeed, the physiological adaptations to exercise may be blunted when local oxidant production in the muscles is suppressed by supplemented antioxidants. Some aspects of muscle supercompensation in response to exercise challenges depend directly on the local formation of oxidants and free radicals.

    Protein
    The king of muscle building proteins probably is whey protein because of its high content of the branched-chain amino acid L-Leucine, which can induce muscle synthesis, but only if there are sufficient other nutrients available to sustain the creation of new muscle tissue. Whey protein is a favorite of most authorities and has the additional virtues, if it remains largely "natural" in its structure, of supporting the body's production of glutathione.

    Because protein sources are digested and absorbed at different rates, one of the more interesting findings of recent years is that a mixture of proteins with different rates of digestion and assimilation is superior to single protein sources. In this case, adding casein and soy protein to whey protein in human trials, especially in the recovery phase, appears to improve results. Clinical finds thus suggest that multi-protein blends, properly constructed, may trump any single source of protein for supporting athletic performance. Pea protein recently has attracted a great deal of attention.

    It is generally agreed that nutrients taken immediately after exercise are readily taken up into the muscles. Some studies have reported improved physical performance with the ingestion of carbohydrate-protein mixtures, both during exercise and during recovery prior to a subsequent exercise test.1 Consuming simple carbohydrates and carbohydrate-only supplements, even prior to workouts, has fallen out of favor.

    Also, it should be borne in mind that the initial meal of the day may play a large role in setting the flexibility of the metabolism for the rest of the day. A higher ratio of protein and fat at breakfast tends to make the metabolism of fat for energy easier throughout the day whereas excessive refined carbohydrates will have the opposite effect.

    Pre- and post-workout supplements generally involve a considerable volume of ingredients. The tub-versus-bar option is really only about convenience. Tubs will deliver protein that is much less expensive gram-for-gram and not necessarily have a ton of fillers. Protein bars almost of necessity will include sweeteners and binders because these are required to make the bars palatable and to hold them together. On a gram basis, as long as the same quality protein source(s) is being used, there should be little difference in efficacy between these two deliveries.

    Creatine
    Workout supplements often involve tradeoffs. For instance, why would an athlete have to take creatine if they are already supplementing with a protein? Are here any additional health benefits to a person that takes both?

    Creatine and protein do different things. Creatine primarily repletes a precursor to ATP to greater levels than can be accomplished under normal physiologic conditions. Creatine itself is not a "building block" for muscle tissue. Refined protein supplements seldom are sources of this compound. Although it is possible by taking extremely large amounts of arginine to provide the body with a means of increasing its own synthesis of creatine, this is not efficient. Some sources of protein, such as red meat, themselves can supply small amounts of creatine. However, again, this is not an efficient means of increasing muscle creatine levels compared to consuming creatine monohydrate directly. Athletes who benefit from creatine supplementation, therefore, should consume creatine for its particular benefits and protein for muscle repair/recovery/ augmentation.

    Creatine has well established ergogenic benefits for strength and greater performance in a number of areas of athletics, primarily events that are short term and explosive in nature as opposed to being oriented towards endurance. For those individuals who train heavily, there are obvious benefits. Body builders who desire the greater bulk similarly may find the muscle edema to be acceptable for aesthetic reasons. Nevertheless, it is true that creatine supplementation that is not coupled to training primarily will lead to a certain amount of muscle edema without other benefits. Likewise, most endurance athletes will not find the weight issue to be counterbalanced by sufficiently enhanced performance to make supplementation beneficial for their sport.

    Endurance
    Nutritional regimens in sports often are planned with specific goals in mind because different goals strongly influence the roles of carbohydrate, fat and protein in supplements for athletes. For instance, building muscle mass is a goal with requirements different to those for getting lean or maintaining balance in terms of muscle and bodyweight. Caffeine is a common ingredient used by most athletes despite the fact that caffeine does not seem to be an ergogenic aid except for those who do not routinely consume it via coffee, soft drinks, tea, etc.

    Pre-workout supplements, which usually are consumed 30 ?60 minutes prior to working out, are designed to increase energy during workouts and provide accessible calories to spare glycogen and thus extend time to failure. Common nutrients include nitric oxide precursors, such as forms of L-arginine and L-citrulline as well as vasodilating herbs. Some formulators suggest the addition of ribose, but others prefer to use ribose either after workouts and/or during workouts. Rhodiola, ginseng and astaxanthin are other supplements used to increase endurance, the latter for its role in improving the ability to metabolize fats for energy. Pre-workout energy drinks based on only carbohydrates or carbohydrates plus caffeine have not fared well in tests.2

    Post-workout supplements are intended to take advantage of a 30?60 minute window of opportunity following workouts during which cells are especially open to absorbing and utilizing nutrients for recovery, including replacing glycogen and restoring lean muscle that often is lost in endurance training. The focus of these products typically is on carbohydrates to replete glycogen and, to a lesser extent, protein quality and quantity. A favored approach is based on replacing glycogen as the key to athletic recovery and therefore pushes high glycemic carbohydrates as primary via ingredients such as waxy maize, maltodextrin and starches from potato and rice. Ribose is another ingredient often seen in these formulas. It should be kept in mind that the wisdom of chronic ingestion of high glycemic index carbohydrates has been challenged by a number of health authorities. Micronized protein increasingly is added to increase insulin response and muscle uptake of nutrients. Taking a good quality hydroxycitric acid (HCA) supplement during recovery has been shown to significantly improve the replenishment of muscle glycogen.3 A proper HCA supplement can be very hard to find?the most thorough research in the area of sports performance had to use a synthesized trisodium hydroxycitrate to achieve results.4 Similarly, a relatively pure potassium HCA salt is more efficacious than a potassium-calcium salt.5

    During (Intra) workout supplements are now common. Over the past decade, it has become more popular to consume nutrients during workouts and not just prior to workouts and after exercise. However, there does not appear to be a consensus as to whether intra-workout supplements should focus on carbohydrates alone or on combinations with small amounts of easily absorbed protein. Many products contain both. Common ingredients aside from the carbohydrates already named are branched-chain amino acids, glutamine, creatine and betaalanine. In recent trials, drinks that supplied less carbohydrate and replaced these calories with a moderate amount of protein led to significantly improved endurance performance in trained long-distance cyclists. It turned out to be the case that fewer calories with a lower level of carbohydrate and more protein worked better in extending time to exhaustion, reducing muscle damage and improving post-exercise adaptation to the challenge of exercise overload.

    Caffeine is another contentious topic. Caffeine has numerous natural sources, including coffee beans, tea, cocoa beans (chocolate source), kola nut, guarana and yerba mate. However, caffeine does not tend to improve athletic performance unless used in quite large amounts and only during competitions. Alternatives include specialized ginseng extracts, L-tyrosine (may increase blood pressure in some individuals), schizandra berry extract and ashwagandha extract. Astaxanthin has been shown to increase endurance performance.

    Endurance athletes in particular should pay attention to the issue of electrolytes. Although there are some unfortunate examples of excessive hydration in athletes, generally speaking, athletes can easily lose enough fluid to lead to reduced performance. Electrolytes, if nothing else, are necessary to bring ingested fluids to the isotonic molarity that will allow them to be readily absorbed by the body. Betaine, which is used in the manufacture of food and beverages, is well studied as a hydration agent. Betaine is an organic osmolyte that helps to stabilize metabolic functions in the face of dehydration and overheating. The usual electrolytes lost in sweat, of course, are potassium and sodium. Increasingly popular in Europe in this area is a combination of salts including potassium, sodium, magnesium and calcium in the form of glycerophosphates. Whether electrolytes are necessary beyond their role in promoting proper hydration remains highly debated.

    Conclusion
    Supplements can play important roles is exercise. The pure carbohydrate products in favor a few years ago, however, no longer are the best supported by research. Protein, protein/ carbohydrate mixtures and combinations of proteins from different sources now are favored. Similarly, athletes who are looking for performance enhancement rather than merely a psychological lift increasingly shy away from simple caffeine and other stimulants. Supplements should be picked for the sport (body building or endurance, for example) and keyed to the expected benefits.

    References

    1. Sports Med. 2010 Nov 1;40(11):941?59.
    2. J Strength Cond Res.2014 May;28(5):1443?53.
    3. Br J Nutr. 2012 Apr;107(7):1048?55.
    4. J Nutr Sci Vitaminol(Tokyo). 2005 Feb;51(1):1?7.
    5. Nutr Metab(Lond). 2006 Jul 17;3:26.
  • When it comes to sports performance supplements, there are few ingredients better known than creatine. Creatine helps to supply energy to cells, particularly in muscle, by assisting in the formation of the body’s energy currency, adenosine triphosphate (ATP).

    But athletes are often unaware that ATP generation requires creatine to first gain entry to muscle. Creatine floating around in the blood is useless if not absorbed by muscle tissue. Yet taken by itself (usually as creatine monohydrate), a significant portion ends-up being simply excreted, i.e., being useless. The reason: low insulin levels.

    Insulin normally signals muscles to absorb creatine. But without food to signal insulin secretion, creatine uptake is minimal. Beyond taste, creatine formulas are often packed with sugars for this very reason. But as many performance athletes attempt to reign in their refined sugar consumption and avoid taxing their bodies with insulin spikes, they are left in a bind trying to eliminate caloric load while using creatine effectively.

    Russian Tarragon: Sugar-less Creatine to Muscles
    Enter Russian Tarragon (Artemisia dracunculus). Diabetes research programs have recently demonstrated Russian Tarragon to have insulin sensitizing action.1 This means that although it doesn’t increase insulin secretion, it allows existing insulin levels to have a stronger influence on the body. This is important in Metabolic Syndrome (a.k.a. insulin resistance syndrome) in which there’s plenty of insulin in the body, but the body’s receptors have become “hard-of-hearing.”

    For healthy individuals, this presents an alternative way to induce creatine clearance from blood without the caloric load or insulin spike. Recent research in healthy males demonstrated that taking one gram of a Russian Tarragon extract along with creatine monohydrate under test conditions led to a significantly greater clearance from blood (and presumably into muscle). The effect was comparable to that achieved by using 75 g of glucose or 50 grams of protein plus 47 grams of carbohydrates.2 Five hundred milligrams taken 30 minutes prior to creatine supplementation did not affect whole body creatine levels and retention, however, meaning that a good response requires at least one gram per day.3

    Glycostat® Bitter Melon: More Insulin Sensitivity & Creatine Uptake

    Bitter melon (Momordica charantia) is another botanical that has a history of use in food and medicine. Like Russian Tarragon, bitter melon has shown tantalizing results in stimulating insulin sensitivity. This implies it may be useful in helping to induce creatine uptake from blood into muscles, an effect found with glucose also to be expected with amino acids.4 Work in diabetic animals suggests that a one-gram dose of a particular Wild Bitter Melon extract in humans can lead to a sustained 15 percent increase in the muscle uptake of nutrients like creatine for hours after ingestion.

    Other research has shown that bitter melon is useful in the mobilization of fats for energy via beta-oxidation.5 Everyone knows fat is an excellent source of energy, but sometimes the body forgets how to utilize it. Bitter melon helps provide a reminder.

    The biggest trick with bitter melon is finding a dried extract that retains the activity of the fresh fruit. Many do not. Glycostat® Wild Bitter Melon appears to be head-and-shoulders above the rest.6

    Help enlighten those who take creatine. There are other ingredients out there that can make it more effective—without the added sugar.

    References:

    1. Cefalu WT, et al. Botanicals and the metabolic syndrome. Am J Clin Nutr. 2008 Feb;87(2):481S–7S.
    2. Jäger R, et al. The effect of Russian Tarragon (artemisia dracunculus L.) on the plasma creatine concentration with creatine monohydrate administration. Journal of the International Society of Sports Nutrition 2008, 5(Suppl 1):P4.
    3. Oliver JM, Jagim AR, Pischel I, Jäger R, Purpura M, Sanchez A, Fluckey J, Riechman S, Greenwood M, Kelly K, Meininger C, Rasmussen C, Kreider RB. Effects of short-term ingestion of Russian Tarragon prior to creatine monohydrate supplementation on whole body and muscle creatine retention and anaerobic sprint capacity: a preliminary investigation. J Int Soc Sports Nutr. 2014 Feb 26;11(1):6.
    4. Wang ZQ, et al. Bioactives from bitter melon enhance insulin signaling and modulate acyl carnitine content in skeletal muscle in high-fat diet-fed mice. J Nutr Biochem. 2011 Nov;22(11):1064–73.
    5. Chan LLY, et al. Reduced Adiposity in Bitter Melon (Momordica charantia)–Fed Rats Is Associated with Increased Lipid Oxidative Enzyme Activities and Uncoupling Protein Expression. J. Nutr. 2005; 135(11):2517–23.
    6. Clouatre DL, Rao SN, Preuss HG. Bitter Melon Extracts in Diabetic and Normal Rats Favorably Influence Blood Glucose and Blood Pressure Regulation. J Med Food 2011 Dec;14(12):1496-504.